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ABSTRACT

Here, we describe a web server that integrates struc-
tural alignments with the MAFFT multiple sequence
alignment (MSA) tool. For this purpose, we have
prepared a web-based Database of Aligned Struc-
tural Homologs (DASH), which provides structural
alignments at the domain and chain levels for all
proteins in the Protein Data Bank (PDB), and can
be queried interactively or by a simple REST-like
API. MAFFT-DASH integration can be invoked with
a single flag on either the web (https://mafft.cbrc.
jp/alignment/server/) or command-line versions of
MAFFT. In our benchmarks using 878 cases from the
BAliBase, HomFam, OXFam, Mattbench and SISY-
PHUS datasets, MAFFT-DASH showed 10–20% im-
provement over standard MAFFT for MSA problems
with weak similarity, in terms of Sum-of-Pairs (SP), a
measure of how well a program succeeds at aligning
input sequences in comparison to a reference align-
ment. When MAFFT alignments were supplemented
with homologous sequences, further improvement
was observed. Potential applications of DASH be-
yond MSA enrichment include functional annotation
through detection of remote homology and assembly
of template libraries for homology modeling.

INTRODUCTION

Multiple sequence alignments (MSAs) form the basis of
a wide range of biological data analyses. MSAs describe
the relationships between a set of protein or nucleotide se-
quences that are assumed to descend from a common ances-
tor and thus play an integral role in our understanding of
molecular evolution. MSAs also play an important role in
protein structural and functional analysis. For example, de-

tecting co-evolution from MSAs is a critical step in the pre-
diction of protein-protein interactions (1,2) and such meth-
ods have been utilized in detection of host-pathogen inter-
actions (3). More recently, integration of deep learning and
co-evolution analysis have markedly enhanced the sensitiv-
ity of protein tertiary structure prediction (4). In the high-
throughput sequencing era, scalable and accurate sequence
alignment is becoming more important, but also more chal-
lenging (5).

An established approach for improving protein MSA ac-
curacy, which was first introduced in 3DCoffee (6), is to
incorporate tertiary structural information. Protein struc-
ture tends to be conserved over long evolutionary timescales
even where there is no detectable homology at the sequence
level (7). MSA software such as Expresso (8,9) in the T-
Coffee package and PROMALS3D (10) allow structural in-
formation to be incorporated in order to improve accuracy
when aligning remote sequence homologs. Since version
7, MAFFT has supported the use of structural restraints
(11). Structural information can be systematically extracted
from pairwise structural alignments, and this information
improves alignment accuracy in benchmarks (12). Despite
its contribution to alignment accuracy, however, integra-
tion of structural restraints can complicate alignment cal-
culations due to the fact that tertiary structures are inher-
ently higher-dimensional objects than sequences and thus
core methods for their processing and alignment more elab-
orate. Furthermore, sequence-structure integration can of-
ten introduce additional parameters that complicate work-
flows and increase computational resource requirements or
data storage requirements for end-users. Due to these con-
siderations and others, tertiary-structure-restrained MSAs
are far from the mainstream. For example, the vast major-
ity of MAFFT web server queries to date have not utilized
structural restraints. Thus, in order to facilitate practical use
of structural information in MSAs, a number of technical
challenges must be addressed.
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Here we have developed a web service, MAFFT-DASH
(https://mafft.cbrc.jp/alignment/server/), which integrates
multiple sequence alignment with a web-based database,
DASH (https://sysimm.org/dash/), that serves comprehen-
sive pairwise structural alignment information in a respon-
sive and ready-to-use form. By employing in-house tools for
structural alignment and their organization in a database
of our design, we were able to circumvent the hierarchical
structure imposed by CATH and SCOP, manage the flow of
data from the PDB to the final result and create a maintain-
able up-to-date public resource. We demonstrate the utility
of this approach by assessing the performance on a number
of established MSA benchmark datasets.

There are a number of benefits to the MAFFT-DASH
integration. In our benchmarks, MAFFT-DASH showed
10–20% improvement for MSAs of remote homologs, as
measured by SP score, over standard MAFFT, and this im-
provement further increased when utilizing an additional
option for including sequence homolog information. Im-
portantly, there are few additional steps required for the
user: the MAFFT-DASH interaction can be invoked with
a single checkbox on the MAFFT web server or by a single
argument (--dash) on the command line. In addition, be-
cause DASH alignments are pre-computed, the additional
computational cost is due primarily to network overhead
and mapping DASH structural alignments to MAFFT in-
put sequences. The burden to the end user is dramatically
less than that of methods that require on-the-fly structural
comparisons or require the user to download and maintain
a local database of structural comparisons. Taken together,
in comparison with other tested software, MAFFT-DASH
offers a highly convenient and efficient way of integrating
sequence and structural alignment information resulting in
accurate alignments with modest additional human or com-
putational costs.

DASH DESIGN AND IMPLEMENTATION

DASH is a stand-alone web-based database of pairwise
structural alignments of representative PDB entries using
the RASH structural alignment method (13). DASH de-
scribes structural similarity at the residue, domain and
chain levels. The domain and residue-level similarities are
used by MAFFT-DASH. Representative PDB chains were
defined, using CD-HIT (14), as those sharing less than 99%
sequence identity. Each representative chain was decom-
posed into domains using Protein Domain Parser (15) and
structural alignments were computed for all unique pairs.
Residue-level structural similarity was defined in terms of a
Gaussian function of the distance between two C� atoms

Si
d0

= e−
(

di
d0

)2

,

where i is the alignment index and d0 is a reference distance
set to 4Å. Significant domain-level similarity was defined
using the RASH score (13), which is a linear combination
of sequence and structure-based terms that were optimized
to agree with CATH and SCOP domain assignments. Full-
length chain-level alignments were constructed for pairs of
chains containing more than one significantly similar do-
main pair. This involved constructing a full length chain-

chain similarity matrix composed of the residue-level struc-
tural similarities, Si

d0 , and the BLOSUM62 amino acid ex-
change matrix. The sequence similarity term was used in or-
der to generate smooth alignments in domain linker regions
without residue-level structural similarity scores. The chain
level alignments were computed using Needleman-Wunsch-
Gotoh algorithm (16,17) on the full-length matrix. In this
way, domain-domain alignments were treated rigidly, but
their relative orientations via domain linker regions were
treated flexibly. This was done so that the lack of structural
comparison information in domain linker regions would
not create artifacts or interfere with the ultimate goal of
multiple sequence alignment.

DASH alignments are made available to the public in
a human-readable form on the DASH website (https://
sysimm.org/dash/; Figure 1D), where pairwise alignments
and structures are graphically displayed in MSAViewer (18)
and Molmil (19), respectively. DASH alignments are also
available in a machine-readable form via a REST-like API.
DASH can be searched by PDB ID, DASH Domain ID, or
sequence. Data from the REST API can be sorted or filtered
by most metadata columns for domains, chains, domain
alignments or chain alignments. There are also separate
REST API endpoints for batched sequence-based searches
as a single query (up to 750 sequences) or retrieving batches
of specific domain or chain alignments as a single query (up
to 100 000 alignments). This is useful for users who wish to
download all alignments for a specific group of domains or
chains. FASTA-formatted sequence files are also provided
for all DASH entries. Updates to the REST API in the fu-
ture will be provided at new web addresses so as to maintain
compatibility and not break tools that rely on it.

The initial pairwise alignment step involved billions of
structural comparisons, but was able to be accomplished
efficiently using Google Cloud Platform. The use of cloud-
computing will allow the database to be updated smoothly
over time to keep pace with the ever-increasing number of
PDB entries.

MAFFT-DASH INTEGRATION

An additional option in the MAFFT web server and
command-line tool has been developed which seamlessly in-
corporates DASH alignments as structural restraints for a
set of input sequences (Figures 1A–C). Representative se-
quences are chosen by a BLAST (20) search of the DASH
chain representatives. Hits for representatives for each se-
quence segment are then combined/filtered to make a mas-
ter list of representative segments for the input set of se-
quences. Comprehensive structural alignments for these
representative segments are then provided by DASH via
the REST API. The DASH representatives are then merged
with the original MAFFT input along with structural
alignment-derived restraints as described below.

In the usual MSA process, group-to-group alignment is
performed using dynamic programming (DP) at the pro-
gressive stage and the iterative refinement stage. For group-
to-group alignment, a DP matrix is constructed using the
profiles of the two sequence groups. When structural align-
ments exist for two groups, the residue-level equivalence
scores are added to the corresponding elements of the DP
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Figure 1. MAFFT and DASH Web servers. (A) Input consisting of three distantly-related sequences––human Regnase-1, VPA0982 from Vibrio para-
haemolyticus and the nuclease domain of taq polymerase from Thermus aquaticus––with the DASH option checked. (B) In the default MAFFT alignment,
a conserved catalytic aspartic acid is not aligned in any of the three inputs. (C) In the MAFFT-DASH alignment, the conserved catalytic aspartic acid is
properly aligned. (D) The pairwise structural alignment between Regnase-1 (3V33) and VPA0982 (2QIP) as displayed in DASH.
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Table 1. Benchmarks using reference MSAs

Methods \ Data HMFM MBSF MBTL OXFM BB11 BB12 BB20 BB30 BB40 BB50 SY

SP
MAFFT 0.916** 0.571** 0.203** 0.894** 0.649** 0.937** 0.927** 0.862 0.917 0.899* 0.751**

Promals 0.947** 0.726** 0.475** 0.947** 0.791 0.936 0.933* 0.883 0.898 0.903 0.848**

T-Coffee 0.922** 0.585** 0.224** 0.909** 0.657** 0.945 0.916** 0.837** 0.897 0.895* 0.778**

Expresso 0.950** 0.708** 0.330** 0.954** 0.734** 0.903** 0.878** 0.827** 0.867** 0.874** 0.805**

MAFFT-DASH 0.971 0.770** 0.436** 0.974 0.764* 0.943 0.937 0.880 0.909 0.918 0.838*

MAFFT-DASH Homologs 0.976 0.787 0.530* 0.975 0.793 0.946 0.938 0.885 0.889 0.919 0.851
Promals3D 0.965** 0.780** 0.598 0.972** 0.807 0.897** 0.926** 0.881 0.899 0.899* 0.873
T-Coffee DASH† 0.966** 0.740** 0.396** 0.970** 0.756** 0.941* 0.934* 0.868 0.899 0.917 0.830**

TC
MAFFT 0.798** 0.254** 0.075** 0.852** 0.407** 0.838* 0.456** 0.586 0.598 0.591** 0.554**

Promals 0.851** 0.393** 0.298** 0.919** 0.582* 0.817 0.496** 0.516** 0.508* 0.572* 0.663**

T-Coffee 0.808** 0.262** 0.098** 0.871** 0.411** 0.855 0.403** 0.474** 0.550 0.587 0.591**

Expresso 0.845** 0.372** 0.173** 0.919** 0.518** 0.752** 0.369** 0.391** 0.440** 0.514** 0.579**

MAFFT-DASH 0.909 0.440** 0.259** 0.961 0.550 0.853 0.557 0.610 0.533 0.643* 0.666
MAFFT-DASH Homologs 0.922 0.464 0.335 0.957 0.588 0.855 0.576 0.603 0.490 0.652 0.684
Promals3D 0.892** 0.451** 0.407 0.952** 0.630 0.755** 0.502** 0.580** 0.490** 0.555** 0.690
T-Coffee DASH† 0.896** 0.410** 0.217** 0.950** 0.526** 0.852 0.466** 0.533* 0.519 0.646 0.642**

Number of cases 87 225 34 165 38 44 41 30 49 16 149

HMFM, HomFam; MBSF, Mattbench-Superfamily; MBTL, Mattbench-Twilight; OXFM, OxFam; BB11–BB50, BAliBASE subsets 11–50; SY, SISYPHUS. Scores that are
significantly worse than the best are marked with * (P < 0.05) and ** (P < 0.01) as calculated with Wilcoxon signed-rank test. Others are in bold. †See the main text. Command
line options are as follows: MAFFT was run with --localpair --maxiterate 100 --thread 4 --threadit 0. Promals and Promals3D were run with default
arguments. T-Coffee was run with -n core 4. Expresso was run with -mode expresso -blast LOCAL -pdb db '/path/to/local/pdb' -n core 4. MAFFT-
DASH was run with --dash --localpair --maxiterate 100 --thread 4 --threadit 0. MAFFT-DASH Homologs was run with mafft-homologs.rb
-l -d uniref50 -o '--dash --globalpair --maxiterate 100 --thread 4 --threadit 0'.

Table 2. Benchmarks without reference MSAs

Methods \ Data HMFM MBSF MBTL

iRMSD
MAFFT 1.069** 2.178** 8.362**

Promals 1.025** 1.531** 3.141
T-Coffee 1.058** 2.107** 6.869**

Expresso 1.004** 1.607** 5.922**

MAFFT-DASH 0.990 1.409** 4.141**

MAFFT-DASH Homologs 0.962 1.371 2.918
Promals3D 0.993** 1.398** 2.912
T-Coffee DASH† 0.977** 1.512** 4.196**

Ideal 0.954 1.381 2.204
Aligned NER

MAFFT 0.804** 0.659** 0.483**

Promals 0.813** 0.692** 0.563
T-Coffee 0.803** 0.647** 0.488**

Expresso 0.813** 0.679** 0.511**

MAFFT-DASH 0.817 0.700 0.549
MAFFT-DASH Homologs 0.818 0.703 0.566
Promals3D 0.817 0.703 0.573
T-Coffee DASH† 0.813** 0.683** 0.530*

Ideal 0.819 0.714 0.611
Number of cases 87 225 34

See the footnote of Table 1 for abbreviations and symbols.

matrix. It is difficult to know a priori how the sequence and
structural information should be weighted. We tried sev-
eral different weights and confirmed that the conclusions
reported here are not sensitive to the specific weight val-
ues (data not shown). MAFFT also provides an option for
incorporating sequence homologs (21) and, if invoked, the
homologs can be used to further query DASH alignments.
DASH alignments can also be incorporated into T-Coffee
as a plugin that is similar to the MAFFT-DASH integra-
tion. Preliminary results for a prototype T-Coffee plugin are
described in this paper.

MSA BENCHMARKS

878 test cases were collected from the BAliBase (22),
HomFam (23), OXFam (an extended version of OXBench
(24)), Mattbench (25) and SISYPHUS (26) benchmark
sets. HomFam and OXFam were chosen over raw HOM-
STRAD and OXBench because they contain more infor-
mation about reliably aligned regions (27) that can be used
for more accurate scoring of estimated alignments. Extra
PFAM sequences in the HomFam and OXFam datasets
were removed prior to benchmarking in order to restrict the
size of benchmark cases to no more than 150 sequences and
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to derive a clearer assessment of the performance of meth-
ods which use sequence homologs (27).

BAliBase provides two scoring methods, Sum of Pairs
(SP) and Total Columns (TC), which were calculated with
bali score. SP and TC scores for all other benchmark
cases were computed using FastSP (28). SP compares a
query MSA with a reference MSA and returns the fraction
of correctly-aligned residue pairs. TC is the fraction of cor-
rectly aligned columns in the alignment.

For benchmark sets which included structure files (Mat-
tbench, HomFam) two additional scores were calculated,
iRMSD (29) and Aligned Number of Equivalent Residues
(NER) (30). iRMSD is a measurement developed to eval-
uate the quality of MSAs when structures are known. It is
the root-mean square deviation (RMSD) of distances that
are less than a cutoff value (10 Å) in two structures that
are composed of equivalent residue pairs. Unlike normal
RMSD, it is not reliant on any specific structural superpo-
sition, and instead uses intra-molecular distance. iRMSD
was computed using T-Coffee.

Because different structural alignment methods use dif-
ferent similarity thresholds leading to differences in the
number of aligned residues, we developed an alternative
MSA quality evaluation strategy, Aligned NER. Rather
than being a comparison between an estimated and refer-
ence MSA, Aligned NER measures the structural accuracy
of models constructed from an MSA. A model is compared
with a reference structure and given a score between 0.0 and
1.0 indicating how structurally similar it is to the reference.
The result is that alignment methods that align more residue
pairs can be fairly compared with those that align fewer
residue pairs. To compute the Aligned NER score, for each
benchmark case, the sequence with known structure that is
most similar to all other sequences according to BLAST is
chosen as the ‘query’, and the rest are used as ‘templates’
to build homology models. Models were built using MOD-
ELLER (31) for each query/template pair using the pair-
wise alignment extracted from the MSA. Aligned NER was
calculated using ASH by measuring the raw NER between
the native template structure and the output model, and
then dividing by the length of the query sequence.

Methods tested included MAFFT, PROMALS, T-
Coffee, Expresso, MAFFT-DASH, MAFFT-DASH
Homologs and T-Coffee-DASH (prototype). Structure
databases used by PROMALS3D, Expresso, MAFFT-
DASH, T-Coffee-DASH and MAFFT-DASH Homologs
were blacklisted at 100% sequence identity against bench-
mark input sequences using BLAST in order to simulate
real-world scenarios where exactly matching representatives
are not available.

For reference, we additionally calculated ‘ideal’ bench-
mark scores by applying the benchmark criteria to the ref-
erence alignments. For SP and TC, which operate in align-
ment space, the ideal values are always perfect (1.0; not
shown). However, for iRMSD and Aligned NER, which use
tertiary structural information, tested programs can exceed
the ideal values, suggesting that there are limitations to the
use of ‘reference’ alignments.

The benchmark results are organized as follows: Table 1
evaluates the mean accuracy of each method (row) for each
test set (column) using SP and TC scores, which depend

on a reference alignment. Table 2 evaluates each method
in terms of structure using iRMSD and Aligned NER.
These results indicate that, overall, MAFFT-DASH Ho-
mologs performed well by all four metrics (iRMSD, Aligned
NER, SP and TC). In most benchmarks, MAFFT-DASH
Homologs performed best or was not significantly differ-
ent from the best. The effect of structural information on
alignment accuracy was clearly observed. Methods with
structural information (lower half in each table) generally
outperformed purely sequence-based methods (upper half),
consistent with previous studies (6,10). MAFFT-DASH
also significantly outperformed its sequence-based counter-
part, MAFFT, in most cases.

An exceptional case is BB40 in Table 1. BB40 contains
sequences with long N- and C-terminal extensions. In the
current implementation, DASH will add domains that are
only locally similar and do not improve the overall MSA
accuracy. Thus, BB40 represents an area for improvement
that will be addressed in a future release.

The average difference in runtime between MAFFT and
MAFFT-DASH for the 572 benchmark cases for which
there were between 5 and 150 input sequences (average of
18 sequences per case) was 124 s, making MAFFT-DASH
the fastest structure-aware method tested. Among meth-
ods which combine sequence, structure, and sequence ho-
mologs, however, MAFFT-DASH Homologs took a longer
amount of time (average wall-clock time of 36 minutes) than
Promals3D (12 minutes). This difference is mainly because
MAFFT-DASH Homologs uses newer and more compre-
hensive databases of sequences which increases the compu-
tational requirements when searching for homologous se-
quences. Reducing the overhead of adding homologous se-
quences without sacrificing accuracy will also be a future
goal.

Based on these results we believe we were successful at
achieving our goal of implementing a high performance
MSA method that enables the incorporation of tertiary
structural information in a painless and efficient way.

CONCLUSIONS AND FUTURE DIRECTIONS

MAFFT and its integration with DASH close the technical
gaps between protein sequence and structural comparison.
By leveraging cloud computing to maintain an exhaustive
structural search of all PDB data, DASH has the potential
to enhance many kinds of downstream analyses. Because
of the low computational resource requirements and gran-
ularity of information contained in the database, we believe
DASH to be particularly well-suited for large-scale analy-
ses such as deep learning-based residue contact or distance
prediction (32,33). MAFFT-DASH has also proven useful
in our hands for multi-template assembly of B or T cell
receptors, which share a common framework but exhibit
diverse binding properties through combinatorial assem-
bly of complementarity-determining regions (Schritt et al.,
submitted). Current limitations include the use of a sin-
gle domain decomposition algorithm in DASH, which can
be addressed by establishing consensus domain boundaries
(34). MAFFT-DASH will continue to be enhanced and ex-
panded by aggregating more metadata from other sources,
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making use of such data in multiple alignments and deliv-
ering results in both user- and machine-friendly ways.
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